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Reflection and refraction of a transient temperature field at a plane interface
using Cagniard—de Hoop approach
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An instantaneous line heat source located in the medium consisting of two half-spaces with different thermal
properties is considered. Green’s functions for the temperature field are derived using the Laplace and Fourier
transforms in time and space and their inverting by the Cagniard—de Hoop technique known in elastodynamics.
The characteristic feature of the proposed approach consists in the application of the Cagniard—de Hoop
method to the transient heat conduction problem. The idea is suggested by the fact that the Laplace transform
in time reduces the heat conduction equation to a Helmholtz equation, as for the wave propagation. Derived
solutions exhibit some wave properties. First, the temperature field is decomposed into the source field and the
reflected field in one half-space and the transmitted field in the other. Second, the laws of reflection and
refraction can be deduced for the rays of the temperature field. In this connection the ray concept is briefly
discussed. It is shown that the rays, introduced in such a way that they are consistent with Snell's law do not
represent the directions of heat flux in the medium. Numerical computations of the temperature field as well as
diagrams of rays and streamlines of the temperature field are presented.
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[. INTRODUCTION Green’s function technique seems to be the most adequate
for studying the temperature fields from impulsive point
It is well known that temperature fields generated bysources. For simple cases, such as regions bounded with a
time-periodic sources exhibit wavelike features, such as th#acuum, Green functions for point heat sources were found
ability to reflect or scatter at boundaries. Wave properties oPy method of images both in tinj@] and frequency domains
temperature fields have been studied intensively during thE3,4]. For two different media in contact the method of im-
last two decades and have been utilized in various techniqué¥J€s permits co_nsider_ing only One_-dim_entional case. A solu-
for obtaining thermal wave images and measuring thermaion for three-dimensional(3D) point, instantaneous heat
properties of matter. Nevertheless, our understanding of thefOUrce in the medium with an interface was obtained by
mal waves is still incomplete. In particular, this concerns thegneans of integral transformatloﬁz,S], but it is difficult for
behavior of thermal waves encountering an interface bephyS|caI interpretation. Our research does not pretend to re-

tween two different media. Extending the analogy with Con-place the above-mentioned solutlon,'becguse We.W'" focus
on 2D case. The approach proposed in this paper is based on

ventional waves, one can expect to observe something Iikﬁ1e method devised by Cagniard in elastodynamics

Snell's law of refraction and other associated phenomena. Cagniard[6] developed his method in 1930s when study-

Fortunately, modern experimental techniques make such obs oronagation of seismic waves. He considered reflection

servatio,ns possible and recently an experimental verification 4 refraction of spherical compressional elastic wave initi-
of Snell's law for plane thermal waves was reporfédl If  5ied by a point source in the two homogeneous elastic semi-
Snell's law holds, the questions about the total reflection anghfinite media separated by a plane interface. Later, de Hoop
head waves arise, which cannot be resolved within eXiSting7] showed that much Simp"ﬁcation could be achieved for
models. This indicates the necessity of further experimentge two-dimensional case. The general outline of the method
and theoretical modeling. consists in the application of the Laplace transform with re-
While the applicability of wave analogies to harmonic spect to time and the Fourier or Hankel transforms with re-
thermal waves does not cause objections, the temperatugpect to the spatial variable parallel to the interface. After
fields generated by impulsive heat sources are usually corsatisfying boundary conditions the inversions of transforms
sidered to be purely diffusional. However, the absence ofre performed by modification of the contour of integration
periodic component in transient temperature field does nan the transformed domain of the spatial variable. Nowadays
prevent it from propagation and the presence of boundariethis method is used in seismology, laser ultrasonics, cracks
or other restrictions can change the temperature distributiodynamics, electromagnetic wave propagation, etc.
dramatically. Taking into account the fact that the transient There were several reports about application of the
solution can be expressed as a sum of harmonic componern@agniard—de Hoop method to diffusive problems. First is de
by means of the Fourier integral, one can expect to observeloop’s research on transient diffusive electromagnetic fields
the reflection and refraction of the transient temperaturén conductive medi@8]. Second is the paper of OlivE®] on
fields at the interface analogous to frequency domain and thigressure transfer in porous media. The mathematical state-
does not contradict their diffusive nature. Nevertheless, thenent of the latter problem is very similar to ours, but Oliver
laws of reflection and refraction for diffusive waves may befirst solves an auxiliary wave equation and then transforms
quite different from those for hyperbolic waves. its solution to the solution of the diffusive problem by using

1063-651X/2001/648)/0366127)/$20.00 64 036612-1 ©2001 The American Physical Society



MARGARITA L. SHENDELEVA PHYSICAL REVIEW E 64 036612
Z A and zero initial condition.

A(0,z0) In these equationsT; is the temperature rise above the

equilibrium stateD; is the thermal diffusivityk; is the ther-

mal conductivity of the each medium, indicgs 1,2 are re-

ferred to the upperz>0) and lower g<0) half-spaces,

olo respectively.

o D It should be noted that the heat source in the equdfipn

7 s is considered in the formy=qyd(t) 5(x) 8(z— zp), whereq

x is the power per unit volume (WAy, qq is a factor of di-
mension Jm?, & denotes Dirac delta function. In E€l) we
assumeyo/(p1¢1) =1 Km?, wherep, is the density of mat-

‘B ter in the upper half-space auwd is the specific heat. Such a

choice allows us to keep the correct dimension for tempera-

ture (K) and provides convenient normalization for the tem-

perature field in the infinite homogeneous spaceT dx dz

=1, where integration is taken in infinite limits. For arbitrary

FIG. 1. Geometry of the model. A pulsed line heat source is
located at the poin@ of the medium consisting of two half-spaces . -
(1 and 2 with different thermal propertiese denotes the angle of qo all S_OIUt'OnS ha_lve to be multiplied by, /(p14).
incidence and the angle of reflection, aficdenotes the angle of To find a solution to the problem the Laplace transform

refraction for the rays of temperature field. with respect to time variable

a special integral transform. The derivation proposed by us is uj= f e ptTj dt (4
straightforward and more transparent. 0

In this paper, a temperature field generated by an instan- . . . .
taneous line heat source in the medium consisting of tw&md the Fourier transform with respect to spatial variable
half-spaces with different thermal properties is considered. A o .
system of heat conduction equations is solved using Laplace Ui:J uje*'fxdx (5)
transform with respect to time and Fourier transform with -

respect to the spatial variable running along an interface. Thgre applied. Then the solutions for the Laplace transforms

mod|f|cat|_on of contour in the Fourier domain according toWhiCh satisfy boundary conditions, can be found in the form
the Cagniard—de Hoop procedure allows us to evaluate an

integral with respect to the Laplace variable and consider- Uy =Ug+Ug, (6)

ably simplify the remaining integration. An analysis of ana-

lytical solutions obtained for the reflected and transmitted Upy=Up, (7)

temperature fields and examples of numerical computations

are given. whereug is the Laplace transform of the source field

Il. DERIVATION OF TEMPERATURE GREEN FUNCTIONS U= L foc exd /ﬁ(i X—|z— 2| JEE+ 1) d¢
USING CAGNIARD —~DE HOOP TECHNIQUE S 4nD,) . D, ¢ ol V& JE+1'

8

A. Application of integral transforms

Consider two semi-infinite media in perfect thermal con-8nd Ur and up are the Laplace transforms of the reflected

tact at a plane interface with an instantaneous line hedind transmitted field, respectively,
source located in one of them, as shown in Fig. 1. Heat

oreE - 1 (= [p . R(§)dé
diffusion is governed by the system of two heat conduction, _ f exp{ 2 iex—(z+z0VEEF 1
equations R™4mD,) .. Dl( X (229 Ve + 1) i1
9)
(az aZ)T 19T, 1 508005220
—_t— T === X)8(z—zq), 1
ax2 gz2] * Dy dt D, _ f P v 7
@ Up= 77D, ) & \/D1(|§X+Z\/§ +Nn?=2z0\E7+1)
P(£§)d¢
#? 9 1 4T, Nl N (10)
(ﬁ 7) B, a ? V& n?
. . During the derivation of Eqs8)—(10) the new variable
subjected to boundary conditionsz¢ 0 &' =¢\D,/p was introduced, then the prime was omitted.
Expressions(9) and (10) contain functionsR(x) and
AL AL (3  P(x), which can be called the reflection and transmission
172 Mgz T2 970 coefficients for the Laplace transforms,
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S Ll

R(¢)= , (11
© VE+ 1+ )& +n? :
&+
2Jé+n?
P(&)=—= = (12)
VE+ 1+ x\/E2+n
where two dimensionless parametarand y are defined by : . . . . Re®)
the ratios of the thermal properties of the media -3 -2 -1 1 2 3
b1k -
"=Np, XTi (13 T|_n a) n>1

The next step is to find the inversions for the Laplace
transforms

1 o+ico
Ti= u;ePdp. (14 ()

J_27T| og—i®

. . c-
For the source fieldig it can be done by means of el- .
ementary manipulation, giving a Green function of point heat

source in the infinite space, as expected: B/Jn Re(®)

T 1 X2+ (z—25)?
ST 47Dt " 4Dt |

(15

. . ) -1 b) n<1
The inversion for the reflectedgr and transmittedup

fields is performed using the Cagniard—de Hoop technique as
described in the following sections.

FIG. 2. (a) Forn>1 the contour of integration is the Cagniard
hyperbola C); (b) for n<1 and sing>n the contour of integration
consists of the Cagniard hyperbdi@) and the bypas$B) of the

Consider the inversion of the Laplace transform for thebranch point=in.
reflected field

B. Reflected field

1 N The hyperbola intersects the imaginary axis at the point
otl% .
To=—— pt 1 sing wheng=0 . _ .
R™ 27 Lfim uge™ dp, (16) The integrand in Eq(9) has two pairs of branch points
&=*i and &= *in, which correspond to the zeros of radi-
whereug, is defined by Eq(9). The essence of the Cagniard cals &+ 1 and &+ n?. For further consideration it is im-
approach to inversion consists in modification of the integraportant to distinguish between two cases; 1 andn<1.

tion contour in the domain of transformed varialglewhich For n>1, which is the case when the heat source is lo-
is now considered as a complex ve_lriable. _ cated in the medium with the higher thermal diffusivity, the
For the reflected field the Cagniard contour in the com-branch cuts start from the points1 on the imaginary axis
plex £ plane can be introduced as as shown in Fig. @ and the Cagniard contour does not
cross the branch cut.
— &+ (24 20) VE+1=1B?+1, 17 The region between the Cagniard contour and the geal

) axis does not contain singularities and the integration along
where g is the real parameter. When paramegechanges  the real axis can be replaced by the integration along the

from zero to infinity, such defined contour represents a hyCagniard contour according to the Cauchy theorem
perbola in the¢ plane consisting of two parts. andé, , as
shown in Fig. 2a),

1 1 +iee
- - pt
£.=iVB%+1sinp=* Bcose. (18 Tr 2qi 4wD1J_im fce

Here the polar coordinateésand ¢ are introduced, witlp F{ p(1+B%)] R(&) ded (21)

i inci in Fi xXexpg —r .
being the angle of incidence, as shown in Fig. 1, D, \/§2T1 &dp

r2=x2+(z+zy)?, (19
In the internal integraC denotes the integration along the
sing=x/r. (20 Cagniard contour. Evaluating the integral with respect to the
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Laplace variable and taking into account the symmetry of the C. Transmitted field

Cagniard hyperbola relative to the imagindfaxis To derive the expression for the transmitted field we can

_ N 29 follow the procedure developed for the reflected field. The
§-==(&+) (22) complication here is that the exponent in the integrand in Eq.

. . . 10) contains two radicals. Let us introduce the real param-
we obtain the Green function corresponding the reflecte ) P

temperature field fon>1 terr
—iEX—zZVEP+ NP+ ZgE+ 1=1. (26)
T——r fx —(ﬂz )ZRR d
R_4(77Dlt)3’2 0 ex 4Dt €R(§)]dB. The properties of this equation were investigated by

23) Cagniard 6]. He found, that for reat, solutionsé(r) can be
pure imaginary or complex. The value of parametgwhen

FunctionR(x) is defined by Eq(11) and any brunct.. the contouré(7) goes out from the imaginary axis to the
can be taken. complex plane corresponds to the singularity of the deriva-

The reflected field23) has a character of waves emanat-tive d¢/d7. Thus we come to the equation
ing from the image source located at the point with coordi-
nates (0;zy). Thus we can conclude that the angle of re- - Zu- Zu —0 27
flectance is equal to the angle of incidence for rays of JnZ—uZz  1-u?
temperature field, as shown in Fig. 1.

When the heat source is located in the medium with thevhere a change of variable is introducedtasiu. According
lower thermal diffusivityn<<1 and the brunch cuts start from to Cagniard this equation has a simple geometrical interpre-
the points£n on the imaginary axis, as shown in Figh2 tation as follows. By introducing two anglgsand # in such
In this situation, if the angle of incidence satisfies the condi-a way thatu=sin¢ andu/n=sin 6, Eq.(27) can be rewritten
tion sing<<n, the Cagniard hyperbola does not cross theas
brunch cut and all above considerations and the forrf28a
are valid. If sing>n, the brunch point+n has to be by- x=zgtane+|z|tand, (28
passed along the additional contour markedBhy Fig. 2(b).
This additional pass goes along the left side of the imaginar
axis from the point sip down to the poinih and then back
along the right side of the imaginary axis. Analytically this
pass can be described using the functfondefined by Eq.
(18) for the range of parameteB specified as €& sing
<i-sin(¢—a), where a=arcsinf). Introducing for conve- - =
nience a new real parameter=—ig the equation of the sing
bypass can be written as

hich means that for given poif(x,z) the sum of projec-
ions of segment& C and CB on thex axis equals segment
OD, as shown in Fig. 1. This proves that E87) always has
a real rootu, satisfying the condition

n. (29

In this expression we can recognize Snell's law. From
o - \% important conclusion n . First, th
t-i(sing =y - yeose), O<yssinga). G S o vanemited fld closses the maginary
axis in the complex plane at the point sig as it was for the
Thus in the formula21) the pass of integratiof has to  reflected field. Second, according to Snell’'s law, the argle
be replaced for the pass+ B and after the integration with for the transmitted field cannot exceed the critical vadue
respect to the variable the result for the reflected tempera- =arcsinq) and the Cagniard contour never crosses the

ture field will be branch cut, which starts from the smallest of the two values
1 andn. Thus, the contour of integration resembles the case
r o (B2+1)r2 shown in Fig. 2a), although it is not a hyperbola.
TR=—[f r{— —} RgR(£)]dB The value of parameter, correspondent to the roat,
4(wD4t)¥?| Jo 4Dt can be found as
in(e—a) —y?)r?
- J " exp - 2 imiRee)1dy], T=RitnRy, (30
0 4Dt

whereR;=AC, R,=CB, as shown in Fig. 1, provided that
point C is found to satisfy conditior29). Introducing for
convenience dimensionless parameger

(29

for n<1 and sinp>n.
In elastodynamics, an additional term, associated with in- 2

tegration along the branch cut, is interpreted as head or coni- B=\]—=-1, (31)

cal waves originated from the interface. By analogy, the 7(2)

same name can be used in E2p) for the second term in the

brackets, although the understanding of its physical meaninge obtain the Green function for the transmitted field in the

requires a more rigorous consideration. form
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. <R1+nR2>2fm F{ <Bz+1>(R1+nR2>TRe( VE+1P(¢) s @
= X —
P amD ¥ o PC 4Dt —iX VE2+ 1E+ n2— zE\E2+ 1+ 206 /€2 +n? P

where functionP(x) is the transmission coefficient defined descent. For the 2D problem with an interface considered in
by expressior{12), and¢ is a function of 3 defined by Egs. this paper, it can be seen, that after integration overxthe

(26) and (31). variable in the infinite limits the equationd), (2), and
boundary conditiong3) reduce to the 1D equations and
Ill. PROPERTIES OF SOLUTIONS boundary conditions. The same should be true for the solu-
) tions derived and this can be a test of their validity.
A. Particular cases By elementary transformations it can be shown, that inte-

Consider the case when the lower half-space is a noncorgration of the Green'’s function@3) or (25) along thex axis
ductive mediumk,=0. Theny=0, R(£§)=1 and the re- gIVes
flected field will be

+°°_I_ g 1-xyn 1 (z+2)°

r - 24 1)r2 f,w RO TN STt P ™ "aD,t

TR:—J' X%_u}dlg X 2 7TD1t 1
4(wDqt)%?Jo 4Dt

(36)

for both casesi>1 andn<1. The right hand side expres-
1 r2 sion is the Green'’s function for the reflected field of an in-
AnDit exp{ "Dy (339 stantaneous point source in 1D geomd®y as anticipated.
The same test can be done for the transmitted figR),
which coincides with the temperature Green function for theyielding
half-space in 2D geometiy2]. As can be seen from EQ),

with k,=0 we obtain the vanishing solution in the second +°°T dxe 2 1 _(z= 25/n)?

medium even ifpzczv_éO. T_hus_to obt_ain the c_orrect limit . P x= n(1+yn) 2 ’_let ex 4Dt |

T,—0 for the transmitted field in the final solution, we have (37)

to put D,=0, 1h=0. In vacuum, we assume the limit

D,—0. that is the Green function for the transmitted field in 1D case

Simple formulas can be derived in the short time approxi{2]. One-dimensional Green'’s functidB7) is usually inter-
mation forx=0. For the reflected field we will havie= 3. If preted as a field generated by an image source located at the
the reflection coefficienR(8) in the integrand in Eq(23)  pointzy/n. In contrast, as can be seen from E3p), there is
changes slowly in comparison with the exponent, we carmo point image source for the 2D transmitted field.
bring the valuer(0) out of the integral sign and integrate the
rest, obtaining C. Numerical computation

1 1-xn (z+2)°
Tr= exg —
47Dt 1+ N 4Dt

Figure 3 illustrates the numerical computations of the re-
, z>0. (34) flected field in the vicinity of the interface for the set of

Under the same assumption that the exponential factor

t=0.25
~

gives the main contribution to the integral, for the transmit- 0.0125 n=3
ted field we obtain t=1 x=0.3
0.01 -
1 2 z—27,/n z—2y/n)?
Tp= \/ 2 —exp — (2=2/n) , 0.0075 |
47Dyt n(1+xn) ¥V z—2zyn 4Dt
0.005
z<O0. (35
0.0025 t

The range of validity of expressiori84) and(35) can be . . . . .
roughly evaluated aszf-z,)%/(4D,t)>1, but it depends \\W
also on the values af and . -0.0025

FIG. 3. Reflected field'y in the vicinity of interface calculated
by formula (23), when the point source is located at a distange

It is known that by integrating over one spatial variable =1 c¢m from the interface for various timés0.25, 1, 2 s. Distance
the Green function for point heat source in the uniform 3Dalong thex axis is in cm, thermal diffusivity of the upper half-space
space reduces to the Green function in 2D space and So 0i8.chosen 1 cAis, relative values of thermal parameters of the two
This is a particular case of so called Hadamard’s method ofedia aren=3, y=0.3.

B. Hadamard descent
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FIG. 4. Rays(arrowhead linesand wave surfaces of reflected
and transmitted temperature fields for=3. The point source is
located atzp=1 cm.

parametersn=3, y=0.3. The parameters were chosen in
such a way that the coefficient of reflection in 1D casee FIG. 5. Streamlinegblack and contour lineggray) for the re-
Eq. (36)] is positive: (1- xn)/(1+xn)>0. As can be seen flected field forn=3, y=0.3, D,=1 cn?s, t=1 s. The point
from Fig. 3, the reflected field in 2D geometry changes sigrsource is located at,=1 cm. The contour lines of reflected field
along the interface. It is connected with the fact that in 2Dhave physical meaning only far>0.

case the boundary conditiori8) impose relations not only

on the heat flux perpendicular to the interface, but also on the |t should be noted that definitions of rays and wave sur-

heat flux along the interface. faces do not contain dependence on time, provided the heat
source is motionless and the properties of medium do not
IV. RAYS AND STREAMLINES change with time. In this case the rays and wave surfaces are

stationary and can be constructed in the whole space inde-

i ture field btained. So far it d t mak endently of time. This is consistent with the fact that the
emperature hield was obtained. 5o farit does not make muc mperature field as described by the classical heat conduc-
sense because the definition of rays was not given. To dﬁ

X . . . on equation appears simultaneously in the whole space af-
that, in analogy with optic§10] we can introduce the ther- 9 bp y P

! dist bet th int Aeand th it of ter switching on the heat source.
mal distance between the point soursean € point 0 An important difference of thermal rays from optical rays
observatiorB as

is that they do not represent the directions of energy flux in
B ds the medium. According to the Fourier law, the heat f@xs
J — (38)  proportional to the temperature gradi&ht:

AVD’

whereds is an element of length. Then the ray between the
pointsA andB can be defined as a path correspondent to the .
shortest thermal distance. The shortest means a local mini- 1hus to see the directions of heat flow, one has to plot
mum in comparison with all other curves in the neares@radient lines of the temperature field, otherwise called
neighborhood. With this analog of Fermat's principle theStréamlines. By definition, the streamline is a curve whose
Snell’'s law in the form(29) can be deduced. For the case {@ngent at each point coincides vv_|th th_e direction of gradient
when the point sourcé and the observation poird lay at of the field at that point. The gradient lines are orthogonal to

the different sides from the interface, the thermal distancdn® linés of constant temperature—isotherms. The example
between pointsA and B taken along ray will be of gradient lines for the reflected temperature field along

with its contour lines(isotherm$ is shown in Fig. 5. From
comparison of Figs. 4 and 5 it is clear that for the reflected

In the preceding section Snell's law for the rays of the

Q=—kVT. (40)

R, R, 1

+ = (R+nRy), (39 field the gradient lines of heat flux do not coincide with rays.
\/D_l \/D_2 \/D_l ' ? This illustrates the principal difference between diffusive and
hyperbolic waves.
which is consistent with E¢30). Both approaches for representation of the temperature

A curve, comprised of points, which lay at the same therfield—rays and streamlines—can serve different purposes.
mal distance taken along rays from the point heat source, caRays can be useful for calculation of temperature field in the
be called a wave surface. It can be shown that for the trangpresence of curved boundaries, in particular for thermal lens
mitted field Tp, the rays constructed as described above aréesign, as was earlier suggested by Bad]. The map of
orthogonal to the wave surfac& +nR,=const. A simu- streamlines can be helpful for understanding the heat ex-
lated diagram of rays and wave surfaces for reflected andhange between layers in measurements of thermal proper-
transmitted fields fon=3 is shown in Fig. 4. ties of composite structures.
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V. CONCLUSIONS tional principle in analogy with optical rays, do not possess

We have derived the exact analytical solutions for theaII properties of true rays. While the thermal rays obey the

Green functions of the temperature field created by a lin laws of reflection and refraction, they do not represent the

e,. . . .
instantaneous heat source in a medium with an interface. _”%rectlons of heat flux in the medium, as can be seen by

derivation was based on the application of the Cagniard—dComparlson of Figs. 4 and 5. In fact, temperature rays simply

Hoon method originally develoned for elastic wave bropa a_Srovide us a convenient way of calculation of temperature
tion pThe solutiogs ogtained irﬁ this way have clegr IE)na(~:t]h_fields, as do fictitious heat sources in the method of images.
: y In should be noted that the ray concept was involved for

em?:]'(e:a(lsfggr?,tsurfir?cr;%rﬁ)sergg:i\%g?gf'gg mézrr?]reettratlﬁgl. tOthe physical interpretation of solutions and was not used dur-
9 y heip ing the derivation of the Green functions. In this sense it can

frer:/f;l Z@ig?urggrr:sa ;ﬂg\t,vcfsn?ooggseef\g?@iﬂ;’g é[())fr;o?}e(l)@e thought of as unnecessary. Nevertheless, thinking in terms
' g 9 f rays can suggest some useful analogies and hypotheses. At

Fhe r.eflected temperature field e_llong _the intgrface as showgp]e same time, the exact solutions help us to comprehend the
in Fig. 3 and the spatial configuration of isotherms andlimits of wave analogies for temperature fields and thus to

streamlines as shown in Fig. 5. . - .
The temperature Green functions obtained by theavOld some common misinterpretations.

Cagniard—de Hoop method exhibit some wavelike features.
The laws of reflection and refraction for the rays of the tem-
perature field following from these solutions coincide with  The author wishes to thank Professor N. N. Ljepojevic
those for the plane thermal waves. From the other side, thand Dr. V. V. Zalipaev for helpful discussions. South Bank
rays of temperature field, formally introduced via the varia-University is gratefully acknowledged for financial help.
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