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Reflection and refraction of a transient temperature field at a plane interface
using Cagniard–de Hoop approach

Margarita L. Shendeleva
School of EEIE, South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom

~Received 21 January 2001; revised manuscript received 21 May 2001; published 29 August 2001!

An instantaneous line heat source located in the medium consisting of two half-spaces with different thermal
properties is considered. Green’s functions for the temperature field are derived using the Laplace and Fourier
transforms in time and space and their inverting by the Cagniard–de Hoop technique known in elastodynamics.
The characteristic feature of the proposed approach consists in the application of the Cagniard–de Hoop
method to the transient heat conduction problem. The idea is suggested by the fact that the Laplace transform
in time reduces the heat conduction equation to a Helmholtz equation, as for the wave propagation. Derived
solutions exhibit some wave properties. First, the temperature field is decomposed into the source field and the
reflected field in one half-space and the transmitted field in the other. Second, the laws of reflection and
refraction can be deduced for the rays of the temperature field. In this connection the ray concept is briefly
discussed. It is shown that the rays, introduced in such a way that they are consistent with Snell’s law do not
represent the directions of heat flux in the medium. Numerical computations of the temperature field as well as
diagrams of rays and streamlines of the temperature field are presented.

DOI: 10.1103/PhysRevE.64.036612 PACS number~s!: 45.30.1s, 44.05.1e, 66.70.1f, 44.10.1i
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I. INTRODUCTION

It is well known that temperature fields generated
time-periodic sources exhibit wavelike features, such as
ability to reflect or scatter at boundaries. Wave properties
temperature fields have been studied intensively during
last two decades and have been utilized in various techniq
for obtaining thermal wave images and measuring ther
properties of matter. Nevertheless, our understanding of t
mal waves is still incomplete. In particular, this concerns
behavior of thermal waves encountering an interface
tween two different media. Extending the analogy with co
ventional waves, one can expect to observe something
Snell’s law of refraction and other associated phenome
Fortunately, modern experimental techniques make such
servations possible and recently an experimental verifica
of Snell’s law for plane thermal waves was reported@1#. If
Snell’s law holds, the questions about the total reflection
head waves arise, which cannot be resolved within exis
models. This indicates the necessity of further experime
and theoretical modeling.

While the applicability of wave analogies to harmon
thermal waves does not cause objections, the tempera
fields generated by impulsive heat sources are usually
sidered to be purely diffusional. However, the absence
periodic component in transient temperature field does
prevent it from propagation and the presence of bounda
or other restrictions can change the temperature distribu
dramatically. Taking into account the fact that the transi
solution can be expressed as a sum of harmonic compon
by means of the Fourier integral, one can expect to obse
the reflection and refraction of the transient temperat
fields at the interface analogous to frequency domain and
does not contradict their diffusive nature. Nevertheless,
laws of reflection and refraction for diffusive waves may
quite different from those for hyperbolic waves.
1063-651X/2001/64~3!/036612~7!/$20.00 64 0366
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Green’s function technique seems to be the most adeq
for studying the temperature fields from impulsive po
sources. For simple cases, such as regions bounded w
vacuum, Green functions for point heat sources were fo
by method of images both in time@2# and frequency domains
@3,4#. For two different media in contact the method of im
ages permits considering only one-dimentional case. A s
tion for three-dimensional~3D! point, instantaneous hea
source in the medium with an interface was obtained
means of integral transformations@2,5#, but it is difficult for
physical interpretation. Our research does not pretend to
place the above-mentioned solution, because we will fo
on 2D case. The approach proposed in this paper is base
the method devised by Cagniard in elastodynamics.

Cagniard@6# developed his method in 1930s when stud
ing propagation of seismic waves. He considered reflec
and refraction of spherical compressional elastic wave in
ated by a point source in the two homogeneous elastic se
infinite media separated by a plane interface. Later, de H
@7# showed that much simplification could be achieved
the two-dimensional case. The general outline of the met
consists in the application of the Laplace transform with
spect to time and the Fourier or Hankel transforms with
spect to the spatial variable parallel to the interface. Af
satisfying boundary conditions the inversions of transfor
are performed by modification of the contour of integrati
in the transformed domain of the spatial variable. Nowad
this method is used in seismology, laser ultrasonics, cra
dynamics, electromagnetic wave propagation, etc.

There were several reports about application of
Cagniard–de Hoop method to diffusive problems. First is
Hoop’s research on transient diffusive electromagnetic fie
in conductive media@8#. Second is the paper of Oliver@9# on
pressure transfer in porous media. The mathematical s
ment of the latter problem is very similar to ours, but Oliv
first solves an auxiliary wave equation and then transfor
its solution to the solution of the diffusive problem by usin
©2001 The American Physical Society12-1
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MARGARITA L. SHENDELEVA PHYSICAL REVIEW E 64 036612
a special integral transform. The derivation proposed by u
straightforward and more transparent.

In this paper, a temperature field generated by an ins
taneous line heat source in the medium consisting of
half-spaces with different thermal properties is considered
system of heat conduction equations is solved using Lap
transform with respect to time and Fourier transform w
respect to the spatial variable running along an interface.
modification of contour in the Fourier domain according
the Cagniard–de Hoop procedure allows us to evaluate
integral with respect to the Laplace variable and consid
ably simplify the remaining integration. An analysis of an
lytical solutions obtained for the reflected and transmit
temperature fields and examples of numerical computat
are given.

II. DERIVATION OF TEMPERATURE GREEN FUNCTIONS
USING CAGNIARD –DE HOOP TECHNIQUE

A. Application of integral transforms

Consider two semi-infinite media in perfect thermal co
tact at a plane interface with an instantaneous line h
source located in one of them, as shown in Fig. 1. H
diffusion is governed by the system of two heat conduct
equations

S ]2

]x2
1

]2

]z2D T12
1

D1

]T1

]t
52

1

D1
d~ t !d~x!d~z2z0!,

~1!

S ]2

]x2
1

]2

]z2D T22
1

D2

]T2

]t
50, ~2!

subjected to boundary conditions atz50

T15T2 , k1

]T1

]z
5k2

]T2

]z
, ~3!

FIG. 1. Geometry of the model. A pulsed line heat source
located at the pointA of the medium consisting of two half-space
~1 and 2! with different thermal properties.w denotes the angle o
incidence and the angle of reflection, andu denotes the angle o
refraction for the rays of temperature field.
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and zero initial condition.
In these equations,Tj is the temperature rise above th

equilibrium state,D j is the thermal diffusivity,kj is the ther-
mal conductivity of the each medium, indicesj 51,2 are re-
ferred to the upper (z.0) and lower (z,0) half-spaces,
respectively.

It should be noted that the heat source in the equation~1!
is considered in the formq5q0d(t)d(x)d(z2z0), whereq
is the power per unit volume (W/m3), q0 is a factor of di-
mension Jm21, d denotes Dirac delta function. In Eq.~1! we
assumeq0 /(r1c1)51 Km2, wherer1 is the density of mat-
ter in the upper half-space andc1 is the specific heat. Such
choice allows us to keep the correct dimension for tempe
ture ~K! and provides convenient normalization for the te
perature field in the infinite homogeneous space:**T dx dz
51, where integration is taken in infinite limits. For arbitra
q0 all solutions have to be multiplied byq0 /(r1c1).

To find a solution to the problem the Laplace transfo
with respect to time variable

uj5E
0

`

e2ptTj dt ~4!

and the Fourier transform with respect to spatial variablex

U j5E
2`

`

uje
2 i jx dx ~5!

are applied. Then the solutions for the Laplace transfor
which satisfy boundary conditions, can be found in the fo

u15uS1uR , ~6!

u25uP , ~7!

whereuS is the Laplace transform of the source field

uS5
1

4pD1
E

2`

`

expFA p

D1
~ i jx2uz2z0uAj211!G dj

Aj211
,

~8!

and uR and uP are the Laplace transforms of the reflect
and transmitted field, respectively,

uR5
1

4pD1
E

2`

`

expFA p

D1
~ i jx2~z1z0!Aj211!GR~j!dj

Aj211
,

~9!

uP5
1

4pD1
E

2`

`

expFA p

D1
~ i jx1zAj21n22z0Aj211!G

3
P~j!dj

Aj21n2
. ~10!

During the derivation of Eqs.~8!–~10! the new variable
j85jAD1 /p was introduced, then the prime was omitted

Expressions~9! and ~10! contain functionsR(x) and
P(x), which can be called the reflection and transmiss
coefficients for the Laplace transforms,

s

2-2
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R~j!5
Aj2112xAj21n2

Aj2111xAj21n2
, ~11!

P~j!5
2Aj21n2

Aj2111xAj21n2
, ~12!

where two dimensionless parametersn andx are defined by
the ratios of the thermal properties of the media

n5AD1

D2
, x5

k2

k1
. ~13!

The next step is to find the inversions for the Lapla
transforms

Tj5
1

2p i Es2 i`

s1 i`

uje
pt dp. ~14!

For the source fielduS it can be done by means of e
ementary manipulation, giving a Green function of point h
source in the infinite space, as expected:

TS5
1

4pD1t
expF2

x21~z2z0!2

4D1t G . ~15!

The inversion for the reflecteduR and transmitteduP
fields is performed using the Cagniard–de Hoop techniqu
described in the following sections.

B. Reflected field

Consider the inversion of the Laplace transform for t
reflected field

TR5
1

2p i Es2 i`

s1 i`

uRept dp, ~16!

whereuR is defined by Eq.~9!. The essence of the Cagnia
approach to inversion consists in modification of the integ
tion contour in the domain of transformed variablej, which
is now considered as a complex variable.

For the reflected field the Cagniard contour in the co
plex j plane can be introduced as

2 i jx1~z1z0!Aj2115rAb211, ~17!

whereb is the real parameter. When parameterb changes
from zero to infinity, such defined contour represents a
perbola in thej plane consisting of two partsj2 andj1 , as
shown in Fig. 2~a!,

j65 iAb211 sinw6b cosw. ~18!

Here the polar coordinatesr andw are introduced, withw
being the angle of incidence, as shown in Fig. 1,

r 25x21~z1z0!2, ~19!

sinw5x/r . ~20!
03661
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The hyperbola intersects the imaginary axis at the po
sinw whenb50 .

The integrand in Eq.~9! has two pairs of branch point
j56 i andj56 in, which correspond to the zeros of rad
calsAj211 andAj21n2. For further consideration it is im-
portant to distinguish between two cases,n.1 andn,1.

For n.1, which is the case when the heat source is
cated in the medium with the higher thermal diffusivity, th
branch cuts start from the points61 on the imaginary axis
as shown in Fig. 2~a! and the Cagniard contour does n
cross the branch cut.

The region between the Cagniard contour and the rej
axis does not contain singularities and the integration al
the real axis can be replaced by the integration along
Cagniard contour according to the Cauchy theorem

TR5
1

2p i

1

4pD1
E

2 i`

1 i`E
C
ept

3expF2rAp~11b2!

D1
G R~j!

Aj211
dj dp. ~21!

In the internal integralC denotes the integration along th
Cagniard contour. Evaluating the integral with respect to

FIG. 2. ~a! For n.1 the contour of integration is the Cagniar
hyperbola (C); ~b! for n,1 and sinw.n the contour of integration
consists of the Cagniard hyperbola~C! and the bypass~B! of the
branch pointj5 in.
2-3
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MARGARITA L. SHENDELEVA PHYSICAL REVIEW E 64 036612
Laplace variable and taking into account the symmetry of
Cagniard hyperbola relative to the imaginaryj axis

j252~j1!* ~22!

we obtain the Green function corresponding the reflec
temperature field forn.1

TR5
r

4~pD1t !3/2E0

`

expF2
~b211!r 2

4D1t GRe@R~j!#db.

~23!

FunctionR(x) is defined by Eq.~11! and any brunchj6

can be taken.
The reflected field~23! has a character of waves eman

ing from the image source located at the point with coor
nates (0,2z0). Thus we can conclude that the angle of r
flectance is equal to the angle of incidence for rays
temperature field, as shown in Fig. 1.

When the heat source is located in the medium with
lower thermal diffusivityn,1 and the brunch cuts start from
the points6n on the imaginary axis, as shown in Fig. 2~b!.
In this situation, if the angle of incidence satisfies the con
tion sinw,n, the Cagniard hyperbola does not cross
brunch cut and all above considerations and the formula~23!
are valid. If sinw.n, the brunch point1n has to be by-
passed along the additional contour marked byB in Fig. 2~b!.
This additional pass goes along the left side of the imagin
axis from the point sinw down to the pointn and then back
along the right side of the imaginary axis. Analytically th
pass can be described using the functionj2 defined by Eq.
~18! for the range of parameterb specified as 0,b
, i •sin(w2a), where a5arcsin(n). Introducing for conve-
nience a new real parameterg52 ib the equation of the
bypass can be written as

j25 i ~sinwA12g22g cosw!, 0,g,sin~w2a!.
~24!

Thus in the formula~21! the pass of integrationC has to
be replaced for the passC1B and after the integration with
respect to the variablep the result for the reflected temper
ture field will be

TR5
r

4~pD1t !3/2H E0

`

expF2
~b211!r 2

4D1t GRe@R~j!#db

2E
0

sin(w2a)

expF2
~12g2!r 2

4D1t G Im@R~j2!#dgJ ,

~25!

for n,1 and sinw.n.
In elastodynamics, an additional term, associated with

tegration along the branch cut, is interpreted as head or c
cal waves originated from the interface. By analogy,
same name can be used in Eq.~25! for the second term in the
brackets, although the understanding of its physical mean
requires a more rigorous consideration.
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C. Transmitted field

To derive the expression for the transmitted field we c
follow the procedure developed for the reflected field. T
complication here is that the exponent in the integrand in
~10! contains two radicals. Let us introduce the real para
etert

2 i jx2zAj21n21z0Aj2115t. ~26!

The properties of this equation were investigated
Cagniard@6#. He found, that for realt, solutionsj(t) can be
pure imaginary or complex. The value of parametert0 when
the contourj(t) goes out from the imaginary axis to th
complex plane corresponds to the singularity of the deri
tive ]j/]t. Thus we come to the equation

x1
zu

An22u2
2

z0u

A12u2
50, ~27!

where a change of variable is introduced asj5 iu. According
to Cagniard this equation has a simple geometrical interp
tation as follows. By introducing two anglesw andu in such
a way thatu5sinw andu/n5sinu, Eq.~27! can be rewritten
as

x5z0 tanw1uzutanu, ~28!

which means that for given pointB(x,z) the sum of projec-
tions of segmentsAC andCB on thex axis equals segmen
OD, as shown in Fig. 1. This proves that Eq.~27! always has
a real rootu0 satisfying the condition

sinw

sinu
5n. ~29!

In this expression we can recognize Snell’s law. Fro
above two important conclusions can be deduced. First,
Cagniard contour for transmitted field crosses the imagin
axis in the complexj plane at the point sinw as it was for the
reflected field. Second, according to Snell’s law, the anglew
for the transmitted field cannot exceed the critical valuea
5arcsin(n) and the Cagniard contour never crosses
branch cut, which starts from the smallest of the two valu
1 andn. Thus, the contour of integration resembles the c
shown in Fig. 2~a!, although it is not a hyperbola.

The value of parametert0 correspondent to the rootu0
can be found as

t05R11nR2 , ~30!

whereR15AC, R25CB, as shown in Fig. 1, provided tha
point C is found to satisfy condition~29!. Introducing for
convenience dimensionless parameterb

b5At2

t0
2

21, ~31!

we obtain the Green function for the transmitted field in t
form
2-4
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TP5
~R11nR2!2

4~pD1t !3/2E0

`

b expF2
~b211!~R11nR2!2

4D1t GReS Aj211P~j!

2 ixAj211Aj21n22zjAj2111z0jAj21n2D db, ~32!
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where functionP(x) is the transmission coefficient define
by expression~12!, andj is a function ofb defined by Eqs.
~26! and ~31!.

III. PROPERTIES OF SOLUTIONS

A. Particular cases

Consider the case when the lower half-space is a non
ductive medium,k250. Then x50, R(j)51 and the re-
flected field will be

TR5
r

4~pD1t !3/2E0

`

expF2
~b211!r 2

4D1t Gdb

5
1

4pD1t
expF2

r 2

4D1t G , ~33!

which coincides with the temperature Green function for
half-space in 2D geometry@2#. As can be seen from Eq.~2!,
with k250 we obtain the vanishing solution in the seco
medium even ifr2c2Þ0. Thus to obtain the correct limi
T2→0 for the transmitted field in the final solution, we ha
to put D250, 1/n50. In vacuum, we assume the lim
D2→0.

Simple formulas can be derived in the short time appro
mation forx50. For the reflected field we will havej5b. If
the reflection coefficientR(b) in the integrand in Eq.~23!
changes slowly in comparison with the exponent, we c
bring the valueR(0) out of the integral sign and integrate th
rest, obtaining

TR5
1

4pD1t

12xn

11xn
expF2

~z1z0!2

4D1t G , z.0. ~34!

Under the same assumption that the exponential fa
gives the main contribution to the integral, for the transm
ted field we obtain

TP5
1

4pD2t

2

n~11xn!
Az2z0 /n

z2z0n
expF2

~z2z0 /n!2

4D2t G ,
z,0. ~35!

The range of validity of expressions~34! and~35! can be
roughly evaluated as (z1z0)2/(4D1t)@1, but it depends
also on the values ofn andx.

B. Hadamard descent

It is known that by integrating over one spatial variab
the Green function for point heat source in the uniform
space reduces to the Green function in 2D space and so
This is a particular case of so called Hadamard’s method
03661
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descent. For the 2D problem with an interface considere
this paper, it can be seen, that after integration over thx
variable in the infinite limits the equations~1!, ~2!, and
boundary conditions~3! reduce to the 1D equations an
boundary conditions. The same should be true for the s
tions derived and this can be a test of their validity.

By elementary transformations it can be shown, that in
gration of the Green’s functions~23! or ~25! along thex axis
gives

E
2`

1`

TR dx5
12xn

11xn

1

2ApD1t
expF2

~z1z0!2

4D1t G ~36!

for both casesn.1 andn,1. The right hand side expres
sion is the Green’s function for the reflected field of an
stantaneous point source in 1D geometry@2#, as anticipated.

The same test can be done for the transmitted field~32!,
yielding

E
2`

1`

TP dx5
2

n~11xn!

1

2ApD1t
expF2

~z2z0 /n!2

4D2t G ,
~37!

that is the Green function for the transmitted field in 1D ca
@2#. One-dimensional Green’s function~37! is usually inter-
preted as a field generated by an image source located a
point z0 /n. In contrast, as can be seen from Eq.~32!, there is
no point image source for the 2D transmitted field.

C. Numerical computation

Figure 3 illustrates the numerical computations of the
flected field in the vicinity of the interface for the set o

FIG. 3. Reflected fieldTR in the vicinity of interface calculated
by formula ~23!, when the point source is located at a distancez0

51 cm from the interface for various timest: 0.25, 1, 2 s. Distance
along thex axis is in cm, thermal diffusivity of the upper half-spac
is chosen 1 cm2/s, relative values of thermal parameters of the tw
media aren53, x50.3.
2-5
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MARGARITA L. SHENDELEVA PHYSICAL REVIEW E 64 036612
parametersn53, x50.3. The parameters were chosen
such a way that the coefficient of reflection in 1D case@see
Eq. ~36!# is positive: (12xn)/(11xn).0. As can be seen
from Fig. 3, the reflected field in 2D geometry changes s
along the interface. It is connected with the fact that in
case the boundary conditions~3! impose relations not only
on the heat flux perpendicular to the interface, but also on
heat flux along the interface.

IV. RAYS AND STREAMLINES

In the preceding section Snell’s law for the rays of t
temperature field was obtained. So far it does not make m
sense because the definition of rays was not given. To
that, in analogy with optics@10# we can introduce the ther
mal distance between the point sourceA and the point of
observationB as

E
A

B ds

AD
, ~38!

whereds is an element of length. Then the ray between
pointsA andB can be defined as a path correspondent to
shortest thermal distance. The shortest means a local m
mum in comparison with all other curves in the near
neighborhood. With this analog of Fermat’s principle t
Snell’s law in the form~29! can be deduced. For the ca
when the point sourceA and the observation pointB lay at
the different sides from the interface, the thermal dista
between pointsA andB taken along ray will be

R1

AD1

1
R2

AD2

5
1

AD1

~R11nR2!, ~39!

which is consistent with Eq.~30!.
A curve, comprised of points, which lay at the same th

mal distance taken along rays from the point heat source,
be called a wave surface. It can be shown that for the tra
mitted fieldTP , the rays constructed as described above
orthogonal to the wave surfacesR11nR25const. A simu-
lated diagram of rays and wave surfaces for reflected
transmitted fields forn53 is shown in Fig. 4.

FIG. 4. Rays~arrowhead lines! and wave surfaces of reflecte
and transmitted temperature fields forn53. The point source is
located atz051 cm.
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It should be noted that definitions of rays and wave s
faces do not contain dependence on time, provided the
source is motionless and the properties of medium do
change with time. In this case the rays and wave surfaces
stationary and can be constructed in the whole space in
pendently of time. This is consistent with the fact that t
temperature field as described by the classical heat con
tion equation appears simultaneously in the whole space
ter switching on the heat source.

An important difference of thermal rays from optical ra
is that they do not represent the directions of energy flux
the medium. According to the Fourier law, the heat fluxQW is
proportional to the temperature gradient¹W T:

QW 52k¹W T. ~40!

Thus, to see the directions of heat flow, one has to p
gradient lines of the temperature field, otherwise cal
streamlines. By definition, the streamline is a curve who
tangent at each point coincides with the direction of gradi
of the field at that point. The gradient lines are orthogona
the lines of constant temperature—isotherms. The exam
of gradient lines for the reflected temperature field alo
with its contour lines~isotherms! is shown in Fig. 5. From
comparison of Figs. 4 and 5 it is clear that for the reflec
field the gradient lines of heat flux do not coincide with ray
This illustrates the principal difference between diffusive a
hyperbolic waves.

Both approaches for representation of the tempera
field—rays and streamlines—can serve different purpos
Rays can be useful for calculation of temperature field in
presence of curved boundaries, in particular for thermal l
design, as was earlier suggested by Burt@11#. The map of
streamlines can be helpful for understanding the heat
change between layers in measurements of thermal pro
ties of composite structures.

FIG. 5. Streamlines~black! and contour lines~gray! for the re-
flected field forn53, x50.3, D151 cm2/s, t51 s. The point
source is located atz051 cm. The contour lines of reflected fiel
have physical meaning only forz.0.
2-6
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V. CONCLUSIONS

We have derived the exact analytical solutions for
Green functions of the temperature field created by a
instantaneous heat source in a medium with an interface.
derivation was based on the application of the Cagniard
Hoop method originally developed for elastic wave propa
tion. The solutions obtained in this way have clear ma
ematical structure and permit of physical interpretation.

The Green’s functions derived for 2D geometry help
reveal phenomena that cannot be simulated by 1D mod
Thus, 2D solutions allow us to observe the change of sign
the reflected temperature field along the interface as sh
in Fig. 3 and the spatial configuration of isotherms a
streamlines as shown in Fig. 5.

The temperature Green functions obtained by
Cagniard–de Hoop method exhibit some wavelike featu
The laws of reflection and refraction for the rays of the te
perature field following from these solutions coincide w
those for the plane thermal waves. From the other side,
rays of temperature field, formally introduced via the var
.

03661
e
e
he
e
-
-

ls.
of

n
d

e
s.
-

e
-

tional principle in analogy with optical rays, do not posse
all properties of true rays. While the thermal rays obey
laws of reflection and refraction, they do not represent
directions of heat flux in the medium, as can be seen
comparison of Figs. 4 and 5. In fact, temperature rays sim
provide us a convenient way of calculation of temperat
fields, as do fictitious heat sources in the method of imag

In should be noted that the ray concept was involved
the physical interpretation of solutions and was not used d
ing the derivation of the Green functions. In this sense it c
be thought of as unnecessary. Nevertheless, thinking in te
of rays can suggest some useful analogies and hypothese
the same time, the exact solutions help us to comprehend
limits of wave analogies for temperature fields and thus
avoid some common misinterpretations.
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